
Jeff Larkin

Alan Minga

1

2

High Speed
Network

I/O processes
running on Object
Storage Servers

(OSS)

I/O channels

RAID Devices
Object Storage
Targets (OST)

Application
processes running
on compute nodes

3

1

2

3

1. Injection rate from one IO/compute node to Lustre FS

� use more nodes to increase injection rate

� One node can sustain 4 OST’s: ~1500 MB/s

2. Number of operations the Meta Data Server can handle

� add more MDS to handle more IO requests #op/s

3. Write/read bandwidth for one OST ~375 MB/s

� use more nodes to pass data to Lustre FS to increase IO

bandwidth per disk: 47 MB/s,

typical number of (RAID 6) disk’s per OST is 8

4

� The user can tell lustre how to spread a file‘s contents across the OST‘s.

� The number of bytes written to one OST before cycling to the next on is

called the „Stripe Size“

� The number of OSTs across which the file is striped is the „Stripe

Count“

� The stripe count is limited by the number of OSTs on the filesystem

you are using and currently has a absolute maximum of 160

� The „Stripe Index“ is the starting OST of the file

� You can select the starting index, the others are selected by the SW

� You control the striping by the „lfs“ command

� Your application does not directly reference OSTs or physical I/O blocks

5

� Logically, a file is a linear sequence of bytes :

� Physically, a file consists of data distributed across OSTs.

OST 2 OST 3OST 1OST 0

6

7

� „lfs setstripe“ is used to set the stripe information for a file or directory:
stefan@kaibab:~> lfs
lfs > help setstripe
setstripe: Create a new file with a specific stripi ng pattern or
set the default striping pattern on an existing dir ectory or
delete the default striping pattern from an existin g directory
usage: setstripe [--size|-s stripe_size] [--offset|- o start_ost]

[--count|-c stripe_count] [--pool|-p <pool>]
<dir|filename>

or
setstripe -d <dir> (to delete default striping)

stripe_size: Number of bytes on each OST (0 filesy stem default)
Can be specified with k, m or g (in KB, MB and GB
respectively)

start_ost: OST index of first stripe (-1 filesys tem default)
stripe_count: Number of OSTs to stripe over (0 defa ult, -1 all)
pool: Name of OST pool

lfs > quit

� The striping info for a file is set when the file is created. It cannot be changed

� You should not change the default stripe_index value

� This to prevent a single OST being ‚overused‘ and running out of space

8

� The ‘root’ filesystem has a default setting.

� A file/directory will inherit the setting of the directory it is created in

� You can change the setting of directory any time

� This will only have an effect on new files, old files do NOT change their

value

� You can create an empty file with a different settings then the directory by

using „lfs setstripe <filename> <your setting>“ (think „touch“)

� You can create a file with specific striping values from your application using

MPI-IO (coming up later)

� If you want to change the lustre settings on an existing file you have to copy

it :
lfs setstripe <your settings> newfile
cp oldfile newfile
rm oldfile
mv newfile oldfile

9

� To check for available lustre filesystems, you do lfs df –h.

~> lfs df -h
UUID bytes Used Available Use% Mounted on
lustrefs-MDT0000_UUID 1.4T 655.5M 1.3T 0% /mnt/lust re_server[MDT:0]
lustrefs-OST0000_UUID 3.6T 658.7G 2.8T 17% /mnt/lus tre_server[OST:0]
lustrefs-OST0001_UUID 3.6T 717.4G 2.7T 19% /mnt/lus tre_server[OST:1]
lustrefs-OST0002_UUID 3.6T 712.0G 2.7T 19% /mnt/lus tre_server[OST:2]
lustrefs-OST0003_UUID 3.6T 676.9G 2.7T 18% /mnt/lus tre_server[OST:3]
filesystem summary: 14.3T 2.7T 10.9T 18% /mnt/lustr e_server

UUID bytes Used Available Use% Mounted on
ferlin-MDT0000_UUID 244.0G 534.3M 229.5G 0% /cfs/sc ratch[MDT:0]
ferlin-OST0000_UUID 8.7T 4.8T 3.5T 54% /cfs/scratch [OST:0]
ferlin-OST0001_UUID 8.7T 4.8T 3.5T 54% /cfs/scratch [OST:1]
ferlin-OST0002_UUID 8.7T 4.8T 3.5T 54% /cfs/scratch [OST:2]
ferlin-OST0003_UUID 8.7T 4.8T 3.5T 55% /cfs/scratch [OST:3]
ferlin-OST0004_UUID 8.7T 5.2T 3.1T 59% /cfs/scratch [OST:4]
filesystem summary: 43.6T 24.4T 17.1T 55% /cfs/scra tch
~>

10

� „lfs getstripe“ will return the striping information for a file or

directory :
> touch delme
> lfs getstripe delme
delme
lmm_stripe_count: 12
lmm_stripe_size: 1048576
lmm_stripe_offset: 5

obdidx objid objid gr oup
5 29742704 0x1c5d670 0
0 28810965 0x1b79ed5 0

11 29259443 0x1be76b3 0
9 28570631 0x1b3f407 0
2 29447652 0x1c155e4 0
1 30365044 0x1cf5574 0
7 29045694 0x1bb33be 0
8 30015537 0x1ca0031 0
4 27747228 0x1a7639c 0
6 27327312 0x1a0fb50 0
3 29428807 0x1c10c47 0

10 30076269 0x1caed6d 0

11

> lfs

lfs > help

Available commands are:

setstripe

getstripe

pool_list

find

check

catinfo

join

osts

df

… (quota arguments removed)

quota

quotainv

path2fid

help

exit

quit

For more help type: help command-name

lfs > 12

DDN SFA10000 Lustre Storage
SS7000 disk enclosures

Water-cooled doors

Cray XE6
CLE Lustre Clients

LNET routers - Layered LNET – XIO Placement

Login ServersPre- & Post-
processing &
Visualization

Servers

IB
 Q

D
R

 F
a

b
ri

c

IB QDR Fabric
Dell R710s + CentOS

Switch Topology - Failover

Lustre 1.8.x

Water-cooled doorsHPSS Data

Movers

NAS – home

60 TB

10 GigE LAN

13

DDN SFA10000 Lustre Storage

Cray XE6
CLE Lustre Clients

OSS Nodes – XIO Placement

Login Servers

10 GigE LAN

Chugach Garnet Raptor Total

OSTs 108 240 504 852

OSS Nodes 27 60 126 213

Arrays (Ctlr Pairs) 9 20 42 71

14

How can parallel I/O be done

15

� One process performs I/O.

� Data Aggregation or Duplication

� Limited by single I/O process.

� Easy to program

� Pattern does not scale.

� Time increases linearly with

amount of data.

� Time increases with number of

processes.

� Care has to be taken when doing the

„all to one“-kind of communication at

scale

� Can be used for a dedicated IO Server

(not easy to program) for small amount

of data
Disk

16

� All processes perform I/O to

individual files.

� Limited by file system.

� Easy to program

� Pattern does not scale at large

process counts.

� Number of files creates

bottleneck with metadata

operations.

� Number of simultaneous

disk accesses creates

contention for file system

resources.

17

filesystem

� Each process performs I/O to a

single file which is shared.

� Performance

� Data layout within the

shared file is very important.

� At large process counts

contention can build for file

system resources (OST).

� Programming language might not

support it

� C/C++ can work with fseek

� No real Fortran standard

18

filesystem

� Aggregation to a processor group which processes the data.

� Serializes I/O in group.

� I/O process may access independent files.

� Limits the number of files accessed.

� Group of processes perform parallel I/O to a shared file or

multiple files.

� Increases the number of shares to increase file system usage.

� Decreases number of processes which access a shared file to decrease file

system contention.

19

� Standard Output and Error streams are

effectively serial I/O.

� All STDIN, STDOUT, and STDERR I/O

serialize through aprun

� Disable debugging messages when

running in production mode.

� “Hello, I’m task 32000!”

� “Task 64000, made it through loop.”

� ...

Lustre

20

HDF5

Application

NETCDF
MPI-IO

POSIX I/O

Lustre File System

21

‚outside‘ and ‚inside‘ your application

22

� Selecting the striping values will have an impact on the I/O

performance of your application

� Rule of thumb :

1. #files > #OSTs : Set stripe_count=1

You will reduce the lustre contension and OST file locking this

way and gain performance

2. #files==1 : Set stripe_count=MIN(#OSTs, #procs)

Assuming you have more than one I/O client

3. #files<#OSTs : Select stripe_count so that you use all OSTs

Example : You have 8 OSTs and write 4 files at the same time,

then select stripe_count=2

23

� 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

� Unable to take advantage of file system parallelism

� Access to multiple disks adds overhead which hurts performance

� Note : Specific rates are dated, but conclusion stands.

Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer

Write Performance

1 MB Stripe

32 MB Stripe

24

� A particular code both reads and writes a 377 GB file. Runs on 6000

cores.

� Total I/O volume (reads and writes) is 850 GB.

� Utilizes parallel HDF5

� Default Stripe settings:

count=4, size=1M, index =-1.

� 1800 s run time (~ 30 minutes)

� Stripe settings: count=-1, size=1M, index =-1.

� 625 s run time (~ 10 minutes)

� Results

� 66% decrease in run time.

Lustre

25

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
ri

te
 (

M
B

/s
)

Processes or Files

File Per Process

Write Performance

1 MB Stripe

32 MB Stripe

� 128 MB per file and a 32 MB Transfer size, each file has a stripe_count of 1

26

● The Met Office Unified Model (UM) is the numerical modelling system developed at the Met Office

� It has been designed to allow different configurations of the same model to be used to produce weather

forecasts and climate predictions

� The system has been in continual development since 1990, taking advantage of steadily increasing

supercomputer power, improved understanding of atmospheric processes, and an increasing range of

observational data sources

� The UM is highly versatile, capable of modelling a wide range of time and space scales including kilometre-

scale mesoscale nowcasts, limited-area weather forecasts, global weather forecasts (including the

stratosphere), seasonal foreasts, global and regional climate predictions as well as being run as part of an

ensemble prediction system

� The UM can be coupled to other models which represent different aspects of the Earth's environment that

influence the weather and climate, such as the ocean and ocean waves, sea-ice, land surface, atmospheric

chemistry and carbon cycle.

● Shown in the following is the N512L76 benchmark case

� N512L76 is a 76 vertical level, 25km horizontal resolution (at mid-latitudes) global forecast model

� The benchmark case is running 1 forecast day (normally run for 7 in operations)

� The UM for this is running in a non-hydrostatic formulation, with Semi-Lagrangian advection and GCR solver.

The grid used is an Arakawa C lat-long regular grid with Charney-Phillips vertical co-ordinate

● Acknowledgements

� Paul Selwood – Met Office

� Eckhard Tschirschnitz – Cray

27

● Startup

� Reading and distributing the initial input data

� Goal: keep startup time constant as core count increases

● Simulation

� Computation per timestep

� Goal: optimize for cache based architecture

� Goal: utilize hybrid MPI / OpenMP parallelism resulting in fewer and larger

messages

� Goal: optimize collective operations, which inherently are non-scaling

� Collecting and writing the result data (frequency depending upon model)

� Goal: fully hide behind computation through asynchronous I/O

● Shutdown

� Collecting and writing the final Unified Model dump file

� Goal: keep shutdown time constant as core count increases

28

● UM already had implemented a definable number of asynchronous I/O servers

� Each handling a certain number of files (Fortran I/O units)

● When doubling the number of cores, ideally compute time AND amount of I/O per

core is reduced to half

● I/O time should scale – but it doesn‘t – how come?

� The single I/O server per file becomes overwhelmed

� Increasing number of smaller packets

� I/O server collects data in a prescribed order, compute tasks wait for completion

29

● What works well at small core counts, may not at large core counts, and most likely will not at very

large counts

� Don‘t trust simple extrapolations

� Fitting in between measurements is ok

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1440 2880 3840 5760 7680 12288 15360

Initial IO overlappable IO final IO PHYDIA Compute total

N512L76

Init and shutdown not

yet constant

Diagnostic PHYDIA

becoming important

out of nowhere

Recurring IO is fully overlapped at

all core counts

30

� There is no “One Size Fits All” solution to the I/O problem.

� Many I/O patterns work well for some range of parameters.

� Bottlenecks in performance can occur in many locations.

(Application and/or File system)

� Going to extremes with an I/O pattern will typically lead to

problems.

� I/O is a shared resource. Expect timing variation

31

32

MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, ‘FILE’,
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);

33

use mpi ! or include 'mpif.h‘
integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset ! Note : might be
integer*8

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘FILE’, &
MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)
offset = rank * nints * INTSIZE
call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_INTEGER,
status, ierr)
call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)
print *, 'process ', rank, 'read ', count, 'integers‘
call MPI_FILE_CLOSE(fh, ierr)

� The *_AT routines are thread safe (seek+IO operation in one call)

34

� Use MPI_File_write or MPI_File_write_at

� Use MPI_MODE_WRONLY or MPI_MODE_RDWR as the flags to

MPI_File_open

� If the file doesn’t exist previously, the flag MPI_MODE_CREATE

must be passed to MPI_File_open

� We can pass multiple flags by using bitwise-or ‘|’ in C, or addition ‘+’

or IOR in Fortran

� If not writing to a file, using MPI_MODE_RDONLY might have a

performance benefit. Try it.

35

� MPI_File_set_view assigns regions of the file to separate processes

� Specified by a triplet (displacement, etype, and filetype) passed to

MPI_File_set_view

� displacement = number of bytes to be skipped from the start of the file

� etype = basic unit of data access (can be any basic or derived datatype)

� filetype = specifies which portion of the file is visible to the process

� Example :
MPI_File fh;
for (i=0; i<BUFSIZE; i++) buf[i] = myrank * BUFSIZE + i;
MPI_File_open(MPI_COMM_WORLD, "testfile",MPI_MODE_CREATE |

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, myrank * BUFSIZE * sizeof(int),
MPI_INT, MPI_INT, ‘native’, MPI_INFO_NULL);
MPI_File_write(fh, buf, BUFSIZE, MPI_INT, MPI_STATUS_IGNORE);
MPI_File_close(&fh);

36

� Describes that part of the file accessed by a single MPI process.

� Arguments to MPI_File_set_view:

� MPI_File file

� MPI_Offset disp

� MPI_Datatype etype

� MPI_Datatype filetype

� char *datarep

� MPI_Info info

37

P2

P1

P0

read

file on disk(s)

disp

etype

filetype

38

P2

P1

P0

read

file on disk(s)

disp

etype

filetype

39

� The MPI interface support two types of IO

� Independent

� each process handling its own I/O independently

� supports derived data types (unlike POSIX IO)

� Collective

� I/O calls must be made by all processes participating in a

particular I/O sequence

� Used the "shared file, all write" strategy are optimized

dynamically by the Cray MPI library.

40

� MPI_File_read_all, MPI_File_read_at_all, …

� _all indicates that all processes in the group specified by the

communicator passed to MPI_File_open will call this function

� Each process specifies only its own access information – the

argument list is the same as for the non-collective functions

� MPI-IO library is given a lot of information in this case:

� Collection of processes reading or writing data

� Structured description of the regions

� The library has some options for how to use this data

� Noncontiguous data access optimizations

� Collective I/O optimizations

41

OST 1OST 0 OST 2

file on disk(s)

temp buffer

user buffer

P2P1P0

read

communication

42

� Data sieving is used to combine lots of small accesses into a single

larger one

� Reducing number of operations important (latency)

� A system buffer/cache is one example

� Aggregation refers to the concept of moving data through

intermediate nodes

� Different numbers of nodes performing I/O (transparent to the

user)

� Both techniques are used by MPI-IO and triggered with HINTS.

43

user’s request for non-contiguous data () from a file

read a contiguous chunk into memory

copy requested portion in user buffer

disk(s)

temp buffer

user buffer

44

user’s non-contiguous write to data () in a file

read a contiguous chunk into memory

write data to temp buffer

disk(s)

temp buffer

user buffer

write contiguous chunk into memory

45

OST 1OST 0 OST 2

file on disk(s)

temp buffer

user buffer

P2P1P0

read

communication

46

� Using data sieving for writes is more complicated

� Must read the entire region first

� Then make our changes

� Then write the block back

� Requires locking in the file system

� Can result in false sharing (interleaved access)

p0 p0 p0p0

(1) Read (2) Modify (3) Write(0) Initial State

47

� Aggregation refers to the more general application of this

concept of moving data through intermediate nodes

� Different #s of nodes performing I/O

� Could also be applied to independent I/O

� Can also be used for remote I/O, where aggregator processes

are on an entirely different system

p0 p1 p2 p0 p1 p2 p0 p1 p2

ReadInitial State Redistribute

48

49

50

High Speed
Network

I/O processes
running on Object
Storage Servers

(OSS)

I/O channels

RAID Devices
Object Storage
Targets (OST)

Application
processes running
on compute nodes

3

1

2

51

1. Injection rate from one IO/compute node to Lustre FS

� use more nodes to increase injection rate

� One node can sustain 4 OST’s: ~1500 MB/s

2. Number of operations the Meta Data Server can handle

� add more MDS to handle more IO requests #IOop/s

3. Write/read bandwidth for one OST ~375 MB/s

� use more OST’s to pass data to Lustre FS to increase IO

bandwidth per disk (47 MB/s),

typical number of (RAID 6) disk’s per OST is 8

52

� A file is written by several tasks :

� The file is stored like this (one single stripe per OST for all tasks) :

� => Performance Problem (like ‚False Sharing‘ in thread programming)

� flock mount option needed, only 1 task can write to an OST any time

OST 2 OST 3OST 1OST 0

Task 1 Task 2 Task 3 Task 4

53

� Problems with independent, noncontiguous access

� Lots of small accesses

� Independent data sieving reads lots of extra data

� Idea: Reorganize access to match layout on disks

� Single processes use data sieving to get data for many

� Often reduces total I/O through sharing of common blocks

� Second ``phase'' moves data to final destinations

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1Initial State Phase 2

54

� Included in the Cray MPT library.

� Environmental variable used to help MPI-IO optimize I/O

performance.

� MPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)

� MPICH_MPIIO_HINTS Environmental Variable

� Can set striping_factor and striping_unit for files created with

MPI-IO.

� If writes and/or reads utilize collective calls, collective buffering

can be utilized (romio_cb_read/write) to approximately stripe

align I/O within Lustre.

� HDF5 and NETCDF are both implemented on top of MPI-IO and thus

also uses the MPI-IO env. Variables.

55

� If set to 2, an algorithm is used to divide the I/O workload into

Lustre stripe-sized pieces and assigns them to collective buffering

nodes (aggregators), so that each aggregator always accesses the

same set of stripes and no other aggregator accesses those stripes.

The overhead associated with dividing the I/O workload can in some

cases exceed the time otherwise saved by using this method.

� If set to 1, an algorithm is used that takes into account physical I/O

boundaries and the size of I/O requests in order to determine how

to divide the I/O workload when collective buffering is enabled.

However, unlike mode 2, there is no fixed association between file

stripe and aggregator from one call to the next.

� If set to zero or defined but not assigned a value, an algorithm is

used to divide the I/O workload equally amongst all aggregators

without regard to physical I/O boundaries or Lustre stripes.

56

OST 0

size/aggregators

OST 1 OST 2 OST 3

aggregatorsA1A0

= stripe size = IO size

57

OST 0 OST 1 OST 2 OST 3

aggregatorsA1A0

= stripe size = IO size
IO size/aggregators

58

OST 0 OST 1 OST 2 OST 3

aggregatorsA1A0

= stripe size = IO size
stripe size/aggregators

59

� MPICH_MPIIO_HINTS_DISPLAY – Rank 0 displays the name
and values of the MPI-IO hints

� MPICH_MPIIO_HINTS – Sets the MPI-IO hints for files opened
with the MPI_File_Open routine
� Overrides any values set in the application by the MPI_Info_set

routine

� Following hints supported:

striping_unit
striping_factor
cb_nodes
cb_buffer_size
cb_config_list

romio_no_indep_rw
romio_ds_read
romio_ds_write
romio_cb_read
romio_cb_write

ind_rd_buffer_size
Ind_wr_buffer_size
direct_io

60

� striping_factor: Specifies the number of Lustre file system stripes

(stripe count) to assign to the file. Default: the site-configured

default value for the Lustre file system.

� striping_unit: Specifies in bytes the size of the Lustre file system

stripes assigned to the file. Default: the site-configured default value

for the Lustre file system.

� direct_io: Controls direct IO.

61

� cb_nodes: Specifies the number of PEs that will serve as

aggregators. Default the same as the striping_factor (CB=2).

� cb_buffer_size: Buffer size for collective I/O. Default is 4 MB.

� romio_cb_read/write: Enables collective buffering on read/write

when collective I/O operations are used. Default automatic.

� cb_config_list: Specifies by name which nodes are to serve as

aggregators. Default: *:1.

62

� romio_ds_read/write: Enables data sieving on read/write. Default

automatic.

� ind_rd_buffer_size: Buffer size for data sieving in independent

writes (not implemented in Cray’s MPI-IO).

63

� If set, override the default value of one or more MPI I/O hints. This also overrides any

values that were set by using calls to MPI_Info_set() in the application code. The new

values apply to the file the next time it is opened using a MPI_File_open() call.

� After the MPI_File_open() call, subsequent MPI_Info_set() calls can be used to pass

new MPI I/O hints that take precedence over some of the environment variable values.

Other MPI I/O hints such as striping_factor, striping_unit, cb_nodes, and cb_config_list

cannot be changed after the MPI_File_open() call, as these are evaluated and applied

only during the file open process.

� The syntax for this environment variable is a comma-separated list of specifications.

Each individual specification is a pathname_pattern followed by a colon-separated list

of one or more key=value pairs. In each key=value pair, the key is the MPI-IO hint

name, and the value is its value as it would be coded for an MPI_Info_set library call.

� Example:

MPICH_MPIIO_HINTS=file1:direct_io=true,file2:romio_ ds_writ
e=disable,/data/usr/dp.*:romio_cb_write=enable:cb_n odes=8

64

Total file size 6.4 GiB. Mesh of 64M bytes 32M ele ments, with work divided amongst all
PEs. Original problem was very poor scaling. For example, without collective buffering,
8000 PEs take over 5 minutes to dump. Note that d isabling data sieving was necessary.
Tested on an XT5, 8 stripes, 8 cb_nodes

PEs

1

10

100

1000

w/o CB

CB=0

CB=1

CB=2

Time
in seconds

65

MPI-IO API , non-power-of-2 blocks and transfers, i n this case blocks and
transfers both of 1M bytes and a strided access pat tern. Tested on an XT5 with
32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3 220 segments, 96 GB file

0

200

400

600

800

1000

1200

1400

1600

1800

Transfer Rate
in MiBs

66

MPI-IO API , non-power-of-2 blocks and transfers, i n this case blocks and
transfers both of 10K bytes and a strided access pa ttern. Tested on an XT5 with
32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3 220 segments, 96 GB file

0

20

40

60

80

100

120

140

160

Transfer Rate
in MiBs

67

On 5107 PEs, and by application design, a subset of the PEs(88), do the writes.
With collective buffering, this is further reduced to 22 aggregators (cb_nodes)
writing to 22 stripes . Tested on an XT5 with 5107 PEs, 8 cores/node

0

500

1000

1500

2000

2500

3000

3500

4000

Transfer Rate
in MiBs

68

� When the size of each record is less than the stripe size (1 MB), I/O

slows down.

� If multiple PEs are writing to the same stripe, all three CB alignment

algorithms can help significantly.

� With contiguous, large (relative to file stripe size) record I/O,

collective buffering generally does not help that much.

69

Storing a distributed domain into a single File

70

� We have 2 dim domain on a 2 dimensional processor grid

� Each local subdomain has a halo (ghost cells).

� The data (without halo) is going to be stored in a single file, which

can be re-read by any processor count

� Here an example with 2x3 procesor grid :

nx
px

ny
py

lnx

lny 71

� First step is to create the MPI 2 dimensional processor grid

� Second step is to describe the local data layout using a MPI datatype

� Then we create a „global MPI datatype“ describing how the data

should be stored

� Finaly we do the I/O

72

nx=512; ny=512 ! Global Domain Size
call MPI_Init(mpierr)
call MPI_Comm_size(MPI_COMM_WORLD, mysize, mpierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, mpierr)

dom_size(1)=2; dom_size(2)=mysize/dom_size(1)
lnx=nx/dom_size(1) ; lny=ny/dom_size(2) ! Local Domain size
periods=.false. ; reorder=.false.
call MPI_Cart_create(MPI_COMM_WORLD, dim, dom_size, periods,
reorder, comm_cart, mpierr)
call MPI_Cart_coords(comm_cart, myrank, dim, my_coords,
mpierr)

halo=1
allocate (domain(0:lnx+halo, 0:lny+halo))

73

gsize(1)=lnx+2; gsize(2)=lny+2
lsize(1)=lnx; lsize(2)=lny
start(1)=1; start(2)=1
call MPI_Type_create_subarray(dim, gsize, lsize, start,

MPI_ORDER_FORTRAN, MPI_INTEGER, type_local, mpierr)
call MPI_Type_commit(type_local, mpierr)

lnx

lny

(1,1)

• Use a subarray datatype to

describe the noncontiguous

layout in memory

• Pass this datatype as argument

to MPI_File_write_all

74

gsize(1)=nx; gsize=ny
lsize(1)=lnx; lsize(2)=lny
start(1)=lnx*my_coords(1); start(2)=lny*my_coords(2)
call MPI_Type_create_subarray(dim, gsize, lsize, start,

MPI_ORDER_FORTRAN, MPI_INTEGER, type_domain, mpierr)
call MPI_Type_commit(type_domain, mpierr)

nx
px

ny
py

75

call MPI_Info_create(fileinfo, mpierr)
call MPI_File_delete('FILE', MPI_INFO_NULL, mpierr)
call MPI_File_open(MPI_COMM_WORLD, 'FILE',

IOR(MPI_MODE_RDWR,MPI_MODE_CREATE), fileinfo, fh, mpierr)

disp=0 ! Note : INTEGER(kind=MPI_OFFSET_KIND) :: disp
call MPI_File_set_view(fh, disp, MPI_INTEGER, type_domain,
'native', fileinfo, mpierr)
call MPI_File_write_all(fh, domain, 1, type_local, status,
mpierr)
call MPI_File_close(fh, mpierr)

76

from: A. Farrés, M. Hanzich & J.M. Cela, RTM High Performance I/O Considerations
Annual EAGE conference Barcelona 2010: K021

77

#define STRIPE_COUNT “16" /* must be an ascii string */

#define STRIPE_SIZE "1048576" /* 1 MB must be an as cii string */

/* data in the local array */

sizes[0]=npz; sizes[1]=npx; sizes[2]=npy;

subsizes[0]=sizes[0]-2*halo;

subsizes[1]=sizes[1]-2*halo;

subsizes[2]=sizes[2]-2*halo;

starts[0]=halo; starts[1]=halo; starts[2]=halo;

MPI_Type_create_subarray(3, sizes, subsizes, starts , MPI_ORDER_C,

MPI_FLOAT, & local_array);

MPI_Type_commit(&local_array);

/* data in the global array */

gsizes[0]=nz; gsizes[1]=nx; gsizes[2]=ny;

gstarts[0]=subsizes[0]*coord[0];

gstarts[1]=subsizes[1]*coord[1];

gstarts[2]=subsizes[2]*coord[2];

MPI_Type_create_subarray(3, gsizes, gsubsizes, gsta rts, MPI_ORDER_C,

MPI_FLOAT, & global_array);

MPI_Type_commit(&global_array);

78

#define STRIPE_COUNT “16" /* must be an ascii string */

#define STRIPE_SIZE "1048576" /* 1 MB must be an as cii string */

…

/* write 3D snaphot to file */

sprintf(filename,"snap_nz%d_nx%d_ny%d_it%4d.bin",nz , nx, ny, it);

MPI_Info_create(&fileinfo);

MPI_Info_set(fileinfo, "striping_factor", STRIPE_CO UNT);

MPI_Info_set(fileinfo, "striping_unit", STRIPE_SIZE);

MPI_File_delete(filename, MPI_INFO_NULL);

rc = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDWR|MPI_MODE_CREATE, fileinfo, &fh);

if (rc != MPI_SUCCESS) {

fprintf(stderr, "could not open input file\n");

MPI_Abort(MPI_COMM_WORLD, 2);

}

79

disp = 0;

rc = MPI_File_set_view(fh, disp, MPI_FLOAT, global_array,
"native", fileinfo);

if (rc != MPI_SUCCESS) {

fprintf(stderr, "error setting view on results file\n");

MPI_Abort(MPI_COMM_WORLD, 4);

}

rc = MPI_File_write_all(fh, p, 1, local_array, status);

if (rc != MPI_SUCCESS) {

MPI_Error_string(rc,err_buffer,&resultlen);

fprintf(stderr,err_buffer);

MPI_Abort(MPI_COMM_WORLD, 5);

}

MPI_File_close(&fh);

80

� 1024x1024x512 sized snapshots (2.1 GB) are written to disk; 16 in

total (each 100 time steps).

� stripe size is 1MB

� stripe count is 4 or 16

� At 1024 cores each MPI task write a 2 MB portion to disk

� Interlagos 32 core nodes at 2.1 GHz

81

Each MPI domain has a

non-contiguous

storage view into the

snapshot file.

This is transparently

handled by MPI-IO

82

83

Process 0’s data array Process 1’s data array Process 2’s data array

Process 0’s map array Process 1’s map array Process 2’s map array
0 14137421183 1051

The map array describes the location of each element
of the data array in the common file

PE 0: MPIIO hints for snap_nz512_nx1024_ny1024_it99.bin:

cb_buffer_size = 16777216

romio_cb_read = automatic

romio_cb_write = automatic

cb_nodes = 4

cb_align = 2

romio_no_indep_rw = false

romio_cb_pfr = disable

romio_cb_fr_types = aar

romio_cb_fr_alignment = 1

romio_cb_ds_threshold = 0

romio_cb_alltoall = automatic

ind_rd_buffer_size = 4194304

ind_wr_buffer_size = 524288

romio_ds_read = disable

romio_ds_write = disable

striping_factor = 4

striping_unit = 1048576

romio_lustre_start_iodevice = 0

direct_io = false

cb_config_list = *:*

84

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 32 64 128 256 512 1024 2048 4096

IO
-t

im
e

in
 s

ec
on

ds

number of cores

3D_FD XE6 (IL 2.1 GHz)

IO with 4 OST
IO with 16 OST

parallel IO build up:
more nodes are used
to stream data to disks

Collective
buffering
communication
overhead for
many small
messages

85

 0

 200

 400

 600

 800

 1000

 1200

 32 64 128 256 512 1024 2048 4096

IO
-t

im
e

in
 s

ec
on

ds

number of cores

3D_FD XE6 (IL 2.1 GHz)

IO with 4 OST
IO with 16 OST

IO with 4 OST ind
IO with 4 OST 1 CB

Independent IO
all MPI-tasks are
writing to the
same file

One aggregator
in collective
buffering

independent io
with data sieving

competing for
stripes: stripe
locking ?

86

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 32 64 128 256 512 1024 2048 4096

B
an

dw
id

th
 in

 M
B

/s

number of cores

3D_FD XE6 (IL 2.1 GHz)

IO with 4 OST
IO with 16 OST

IO with 4 OST ind
IO with 4 OST 1 CB

87

IO-time number of

OST’s

Stripe Size Data Sieving

276.7 4 64K disabled

259.0 4 1M disabled

302.5 4 16M disabled

310.5 1 1M disabled

274.1 16 1M disabled

54.5 4 1M enabled

256 cores with different IO settings through MPIIO_HINTS

88

� Data sieving and collective buffering (option 2) are the

main techniques for getting close to optimal IO.

� If that does not work and IO bottleneck is in:

� MDS

� Try data sieving

� Try to reduce the number of output files

� Bandwidth from Compute Part

� Use more tasks doing IO

� Bandwidth to Hard Disk

� Use more OST’s: 4 per IO aggregator

89

� Use sufficient I/O hardware for the machine

� As your job grows, so does your need for I/O bandwidth

� You might have to change your I/O implementation when scaling

� Lustre

� Minimize contention for file system resources.

� A single process should not access more than 4 OSTs, less might be better

� Performance

� Performance is limited for single process I/O.

� Parallel I/O utilizing a file-per-process or a single shared file is limited at large

scales.

� Potential solution is to utilize multiple shared file or a subset of processes

which perform I/O.

� A dedicated I/O Server process (or more) might also help.

90

� http://docs.cray.com

� Search for MPI-IO : „Getting started with MPI I/O“, „Optimizing

MPI-IO for Applications on CRAY XT Systems“

� Search for lustre (a lot for admins but not only)

� Message Passing Toolkit

� Man pages (man mpi, man <mpi_routine>, ...)

� mpich2 standard :

http://www.mcs.anl.gov/research/projects/mpich2/

91

http://adiosapi.org

92

Adaptable I/O System

• Provides portable, fast, scalable, easy-to-use,

metadata rich output with a simple API

• Change I/O method by changing XML

input file

• Layered software architecture:
– Allows plug-ins for different I/O implementations

– Abstracts the API from the method used for I/O

• Open source: 1.3.1 is current version

– http://www.nccs.gov/user-support/center-projects/adios/

• High Writing Performance
– S3D: 32 GB/s with 96K cores, 1.9MB/core: 0.6% I/O overhead with

ADIOS

– XGC1 code � 40 GB/s, SCEC code 30 GB/s

– GTC code � 40 GB/s, GTS code: 35 GB/s

Interface to apps for descrip on of data (ADIOS, etc.)

Buffering Feedback Schedule

Mul -resolu on

methods

Data Compression

methods

Data Indexing

(FastBit) methods

Data Management Services

Workflow Engine Run me engine Data movement Provenance

Plugins to the hybrid staging area

Visualiza on Plugins Analysis Plugins

Parallel and Distributed File System

IDX HDF5 Adios-bp pnetcdf “raw” data Image data

Viz. Client

93

Usability of Optimizations
• New technologies are usually constrained by the

lack of usability in extracting performance

• Next generation I/O frameworks must address

this concern

– Partitioning the task of optimizations

from the actual description of the I/O

• Allow framework to optimize for both read/write performance on machines

with high-variability, and increase the “average” I/O performance

st
d

d
e

v.
 t

im
e

94

ADIOS BP File Format

• Fault tolerance is critical for success of a parallel file format.

• Failure of a single writer is not fatal.

• Necessary to have a hierarchical view of the data (like HDF5).

• Tested at scale (2200K processors for XGC-1) with over 20TB in a single

file

Process Group

0

Process Group

0

MPI Processor 0

Process Group

1

Process Group

1
…………

Process Group

n

Process Group

n

Metadata segment (footer)MPI Processor 1 MPI Processor n

Process Group

Index
Variable Index

Attributes

Index

Index

Offset

1) ADIOS BP File Format – single file case

Header Payload

95

0

10

20

30

40

50

1728 13824 46656 110592

G
B

/s

Cores

QLG2Q with ADIOS on Jaguarpf

New applications of ADIOS

RAMGEN/Numeca
• CFD solver by Numeca International

used by RAMGEN Power Systems at

OLCF

• Two Body test case - 500 million

grid cells - 3840 processes

QLG2Q
• Two-qubit quantum lattice gas model

for quantum turbulence by Min Soe,
RSU

• about 30MB data per
process (1.3TB@46k - 3.2TB@110k),

• Old I/O codes: MPI-IO with file views
(single file) and POSIX (one file per
core): did not scale beyond 20+k

• ADIOS: 30-40 GB/sec write/read
speed on Jaguarpf with 36^3/48^3
runs.

96

ADIOS MPI_AMR Method

• ADIOS method that improves IO performance on Lustre

Parallel File System

• Key improvements:

– Eliminate lock contention: Write out multiple subfiles with each

file striped on 1 storage target (OST)

– Aggregate IO among processors: Selected processors gathers all

the data and write them out in a big chunk

– Threaded file opens: Simulation can continue while waiting for file

to be opened

– Good usability: Other than telling ADIOS the # of aggregators to

use, everything is the same as writing/reading one file to users.

97

Staged I/O• How to get the most out the file system for small data sizes?

• Write as large as possible by aggregating data among processors

• Perform I/O in a controlled manner to minimize contention

• MPI processors are divided into groups and each group

writes independently

• Two-round index construction: first construct index within a

group and then among aggregators

• Staged reading

• Chunk reading: try to merge read requests as much as possible so that bigger

requests can be issued to the file system

• Reduce metadata cost by opening file only on aggregators

• opening all sub-files on all aggregators are very costly

98

Aggregator Aggregator Aggregator Aggregator

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

OST0 OST1 OST2 OST3

Interconnection network

Subfile 0Subfile 0 Subfile 1Subfile 1 Subfile 2Subfile 2 Subfile 3Subfile 3

- MPI Processor - Aggregator Processor - Storage

Staged Write

99

Data Formats: Elastic Data Organization

• Read optimizations via
chunked based approach

• Goal is to reduce time to
read subsets of data
from common access
patterns without slowing
down write time

– Read in all of a single
variable.

– Read an arbitrary
orthogonal sub-volume

– Read an arbitrary
orthogonal full plane

100

Data Organization and Common Access Patterns

Further look at reading from parallel file

system

101

• Restarts: arbitrary number of processors reading (1/2
writers)

Pixie 3D, Fusion MHD simulation on Cray XT5

Why? (Look at reading 2D plane from 3D

dataset)• Use Hilbert curve to place chunks on lustre file system with an
Elastic Data Organization.

Theoretical concurrency Observed Performance

102

Working with spatial-temporal data with

GEOS-5

Read performance for 30 time steps, half-

degree/variable (STAR = ADIOS-1.6)

103

ADIOS 1.4 (July 5, 2012)

• New Read API targeted for in situ processing
– streaming (access to time-steps one by one)

– chunking (processing a read request in small chunks)

• Skel
– IO skeleton code generator from XML configuration time

– standardized performance measurement

• Extended schema in the XML format
– to define how to visualize a variable, to define meshes, etc.

• Java and python wrappers
– Fortran/C and Matlab + Java + python

• Staged Reading

104

Setup/Cleanup API

• Initialize/cleanup

– adios_init (‘config.xml’)

• parse XML file on each process

• setup transport methods

– adios_finalize (proc_id)

• give each transport method opportunity to cleanup

• particularly important for asynchronous methods to make

sure they have completed before exiting

– adios_init_noxml ();

• Must be used when there is no XML configuration file instead

of adios_init

105

Main IO APIs for writing

• Open

– adios_open (handle, ‘group name’, ‘file name’, mode,
communicator)

• Handle used for subsequent calls for write/read/close

• ‘group name’ matches an entry in the XML

• Mode is one of ‘w’ (write), ‘r’ (read), ‘a’ (append)

– later ‘u’ (update [read/write])

– Do not use ‘a’ if you use the MPI_AMR method.

• Communicator tells ADIOS that all of the process in this
communicator will perform the same action

• Close

– adios_close (handle)

• handle from open

106

Main IO API for writing

• Write

– adios_write (handle, ‘name’, data)

• Handle from open

• Name of var or attribute var in XML for this group

• Data reference

– NOTE: with a XML configuration file, adios can build

fortran or C code that contains all of the write APIs

• Must specify one per var written

107

One final piece required for buffer

overflows

• adios_group_size(int64_t handle, uint64_t

data_size, uint64_t total_size)

– handle is the handle returned from open

– data_size is the size of the data in bytes to be written

– total_size is the return of the function which is how

many bytes will really be written (includes metadata)

• gpp.py generates

– adios_write and adios_group_size statements

– 2 files per group (1 for read, 1 for write) in the language

specified in the XML file (C style or Fortran style)

108

Asynchronous IO hints

• Indicate non-IO intensive sections of code

– adios_start_calculation ()

– adios_stop_calculation ()

• IO pacing hint

– adios_end_iteration ()

109

Main APIs for reading (open)

• Open/close a file
– adios_fopen (file_handle, filename, communicator, group_count, error)

– adios_fclose(file_handle, error)

• Open/close a group in a file
– adios_gopen(file_handle, group_handle, groupname, number_of_variables,

number_of_attributes, error)

– adios_gclose(group_handle, error)

• Similar for C, but handle is the return of the function, NULL if there is an
error, � no error parameter for C, and number_of_variables,
number_of_attributes is stored in the group_handle structure.

• Extra function to open a group by an ID.
– gp = adios_gopen_by_id(file_handle, id)

110

Inquire about which variables are in the

group

• ADIOS_VARINFO * adios_inq_var (ADIOS_GROUP *gp,
const char * varname);
– Inquiry about one variable in a group.

– This function does not read anything from the file but
processes info already in memory after fopen and gopen.

– It allocates memory for the ADIOS_VARINFO struct and
content, so you need to free resources later with
adios_free_varinfo().

– IN: gp pointer to an (opened) ADIOS_GROUP struct *

– varname name of the variable

– RETURN: pointer to ADIOS_VARINFO struct

111

Read data

• adios_read_var(group_handle, variable_name, offset,
readsize, data, read_bytes)

– Group_handle is the return value of adios_gopen

– Variable_name is the name (string) of the variable in the
ADIOS output file

– Offset is array of offsets to start reading in each dimension

– read_size is number of data elements to read in each
dimension

– Data is the return data of the variable

– read_bytes is the total data adios read in

112

